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Abstract: The physics of Space Elevators connecting the 
Earth with outer space has recently attracted increased 
attention, in part due to the discovery of ultra-strong 
materials such as carbon nanotubes and diamond nano-
thread structures. In this article we review a new venue in 
space elevator physics: Rotating Space Elevators (RSE) [L. 
Golubović and S. Knudsen: “Classical and statistical 
mechanics of celestial scale spinning strings: Rotating space 
elevators”, Europhysics Letters 86(3), 34001 (2009)]. The RSE 
is a double rotating system of strings reaching outer space. 
Objects sliding along the RSE string (sliding climbers) do not 
require internal engines or propulsion to be transported far 
away from the Earth's surface. The RSE thus solves a major 
problem in the space elevator technology which is how to 
supply the energy to the climbers moving along the string. 
RSE strings exhibit interesting nonlinear dynamics and 
statistical physics phenomena. Satellites and spacecraft 
carried by sliding climbers can be released (launched) along 
RSEs. RSE strings can host space stations and research posts. 
Sliding climbers can be then used to transport useful loads 
and humans from the Earth to these outer space locations. 

Keywords: Space Elevator, Inertial Forces, Classical 
Mechanics, Statistical Physics, Space Travel, Nonlinear 
Dynamics, Instabilities and Transitions, Chaos 

 

1. Introduction 

The physics of Space Elevators connecting the Earth with 
outer space has attracted increased attention in this 
millennium [1]. This interest emerged in part due to the 
discovery of ultra-strong materials such as carbon 
nanotubes [2,3] and diamond nano-thread structures [4]. 
Space elevators are celestial scale examples of physical 
systems with reduced dimensionality such as the strings, 
polymers, and membranes [5,6,7].   

Recently, we introduced a new concept in this physics area: 
Rotating Space Elevator (RSE) [8-11]. In this review article 
we discuss this new venue in space elevator physics. The 

RSE is a double rotating floppy string reaching 
extraterrestrial locations. Interestingly, objects sliding along 
the RSE string (climbers) do not require internal engines or 
propulsion to be transported far away from the Earth's 
surface. The RSE thus solves a major problem in space 
elevator physics which is how to supply energy to the 
climbers moving along space elevator strings. 

 

2. Historic background: The conceptual development of 
the traditional Space Elevator 

Dreams of traveling to the heavens have entranced men 
since the early times of civilization. The story of the “Tower 
of Babel” in Genesis 11 of the Bible connects the notion of 
human cooperation for space travel to “heaven” to the 
multiplying of human languages, which frustrates the effort. 
In modern history, the fable “Jack and the Beanstalk,” from 
1807 (and a burlesque version named The Story of Jack 
Spriggins and the Enchanted Bean from 1734) presents a 
young boy whose mother plants foolishly obtained seeds 
which then grow into a great tower that can even hold a 
giant! Neither of these stories addresses the physics 
questions of how the towers can remain upright under 
compressive and buckling (bending) forces. 

It was therefore up to the famous Russian scientist 
Konstantin Tsiolkovsky in 1895 to integrate the vision of the 
space elevator with the realities of physics [1]. Tsiolkovsky 
was considered to be a rocket scientist and the father of 
spaceflight and he had spent considerable time thinking 
about the limitations and alternatives of rocket flight. He 
was inspired by the Eiffel Tower in Paris to conceptualize a 
tower that reached from ground zero all the way into deep 
space, above the geosynchronous satellite orbit. This 
"celestial castle" would orbit the Earth in a geosynchronous 
fashion meaning that it would be directly overhead one 
spot on Earth's surface at all times. An object released at 
the tower's top would also have the orbital velocity 
necessary to remain in geosynchronous orbit. Thus, the 
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Tsiolkovsky’s tower can be used to deploy satellites into 
orbits around the Earth.  

The centrifugal force due to Earth rotation acting on 
celestial towers has an interesting effect: A tall enough 
tower is under tension rather than compression, and 
therefore is not subject to the sorts of buckling that limits 
the height of skyscrapers. In the case of skyscrapers, the 
centrifugal force is negligible, but for the celestial size 
objects envisioned by Tsiolkovsky and his followers, both 
scientists and science fiction writers such as Arthur C. Clarke 
[12,13] the gravitational force and centrifugal force play 
equally significant roles. Because the internal force is a 
tension rather than compression, the space elevator can be 
a floppy non-rigid object (“string”). 

It wasn't until 1960 that someone suggested a feasible 
method for building the space elevator. Another Russian 
scientist, Yuri N. Artsutanov, conceived a scheme for 
building a space tower [14,15]. Artsutanov proposed using a 
geosynchronous satellite as the starting point from which to 
construct the tower. By using a counterweight, a cable 
would be lowered from the satellite down to the Earth 
surface while the counterweight was extended from the 
satellite away from Earth, keeping the center of gravity of 
the cable motionless relative to the rotating Earth. This 
construction scheme is still the standard [1]. 

Jerome Pearson [16] brought the idea of the space elevator 
to the scientific community in the U.S. In his careful and 
detailed design of a workable space elevator while at the 
U.S. Air Force Flight Dynamics Laboratory he outlined, 
mathematically and physically, the implications of a space 
elevator string designed to obey the constraint of constant 
stress (tension/cross sectional area) throughout, while 
maintaining an external force balance. Artsutanov 
independently proposed the same idea [14,15]. The two 
balancing external forces in the earth frame are the 
centrifugal and gravitational forces. The Pearson-Artsutanov 
constant stress elevator provides a simple way to handle 
the high tensions present in space elevators: The elevator 
can be designed for any given value of the constant stress. 
This value is can be chosen to be smaller than the critical 
breaking stress of the material used. Hence, from the 
materials science point of view, real space elevators can be 
made. This spurred a lot of recent interest in building space 
elevators out of novel materials such as carbon nanotubes 
[1-3].  

It is very easy to understand the advantages of the space 
elevator concept over conventional rocket propulsion. With 
chemical propulsion, a rocket carries its own fuel that it 
needs to overcome gravitational forces, leading to intrinsic 
energy inefficiency. Because of earth’s deep gravitational 

well, the load-to-fuel ratios are typically very small (e.g., ~ 
10-2

 for the Apollo/Saturn V missions to the Moon), so that 
essentially all fuel energy is used to accelerate the fuel 
itself. On the other side, within the space elevator concept, 
a spaceship climbs along the elevator via an internal 
electrical engine which uses externally supplied electric 
energy. Since there is no fuel carried by the climber, the 
supplied energy is 100% used to lift the climber. So, the 
space elevator concept is immensely more energy efficient 
than the rocket propulsion. 

The problem however remains on how to externally supply 
the energy to the climber. Naively, one may think of running 
an electrical transmission line along the space elevator, until 
realizing just how long this structure is compared to 
transmission lines on earth, so that power losses will be 
close to 100%. To remedy this, Edwards proposes that laser 
power be beamed up the elevator from the ground to the 
climber [1]. The beam energy would be absorbed by 
climbers and converted into electrical energy driving their 
engines. For any of these schemes climbing is typically slow 
and it may take several months for the climber to travel 
along the space elevator from the Earth to the 
geosynchronous level. During such a long climb, the useful 
load (including possibly humans) would be exposed for a 
very long time to dangerous cosmic radiation, which is 
especially strong in this range of altitudes above the Earth. 
Even without this problem with cosmic rays, typically long 
travel time itself is certainly not a satisfactory feature of 
space elevators, especially if a rapid deployment of objects 
into outer space is desired. 

These were the motivations for us to introduce a completely 
novel space elevator concept described in the following. 

 

3. Rotating Space Elevator (RSE): Solution of the climber 
energy supply problem 

In this review article we discuss a new class of nonlinear 
dynamical systems, Rotating Space Elevators (RSE). The RSE 
concept has been introduced for the first time by us in [8] 
and elaborated in detail in our subsequent studies [9-11]. 

The RSEs are multiply rotating systems of strings. 
Remarkably, useful loads and humans sliding along the RSE 
strings do not require internal engines or propulsion to be 
rapidly transported (sled) into space far away from the 
Earth's surface; see section 4 discussions. Thus, the RSE 
concept solves the major problem of energy supply to 
climbers that troubles the ordinary LSE concept.  
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Figure 1 - In (a) upper panel, the elliptical RSE with minor semi-axis b= 0.5 
Earth radii and major semi-axis a = 3.2107 Earth radii (so its top is about 0.8 
Earth radii above the geo-stationary level). In (a) lower panel, a different 

view on the RSE. The coordinate system ),,( 321 RRR  rotates together 

with the Earth around the R2-axis pointing through the north pole N. 
Indicated are the internal (nearly around the R1-axis) and geo-synchronous 
(together with the Earth) rotations of the RSE. The RSE is tied to the Earth 
at its bottom point. In (b), we show the USRSE (attached to a LSE) with TRSE 
= 4.22 min (discussed in sect. 4). In these figures we also include the 
equipotentials of the effective potential in eq. (7). Sliding climbers oscillate 
between two turning points (indicated by straight arrows) that are on the 
same equipotential. Adapted from [9]. 

The RSE is a double rotating floppy string typically having 
the shape of a loop as in Figure 1. Due to its special kind of 
motion (see below), the RSE becomes pre-tensioned due to 
gravitational and inertial forces. Due to the tension, the 
floppy RSE maintains its loopy shape.  

The special RSE motion, ensuring the persistence of its 
shape, is a nearly a geometrical superposition of: (a) 
geosynchronous (one-day period) rotation around the 
Earth, i.e. the R2-axis in Figure 1, and (b) yet another 
rotational motion of the string which is typically much faster 
(with period ~ tens of minutes) and goes on around a line 
perpendicular to the Earth at its equator (the R1 axis in 
Figure 1). 

This second, internal rotation plays a very special role: It 
provides the dynamical stability of the RSE shape and, 

importantly, it also provides a mechanism for the climbing 
of objects free to slide along the RSE string. 

RSE can be used to elevate climbers from the surface of the 
Earth to remote outer space locations in a simple way; see 
Sec. 4. Remarkably, the climbers in Figure 1 do not need any 
internal engine to execute their motion. Rather, they 
spontaneously slide along the RSE string from the Earth to 
outer space locations. This unusual climber sliding motion is 
facilitated by the inertial force (centrifugal force) acting on 
climbers due to the RSE’s internal rotation. In section 6 we 
describe possible use of RSE to launch satellites and 
interplanetary spaceships.  

The RSE can be made in various shapes.  The simple double 
rotating geometrical motion can be made to represent an 
approximate yet exceedingly accurate solution to the exact 
equations of the RSE string dynamics. This RSE feature is 
accomplished by a special (‘magical’) choice of mass 
distribution of the RSE cable; see Sec. 4. This RSE feature is 
corroborated by numerical simulations showing that (under 
the conditions discussed in Sec. 5) the RSE double rotation 
motion as well as nearly constant RSE shape can both 
persist indefinitely in time [8,9,10].   

The elliptical RSE in Figure 1(a) exhibits very high tensile 
stresses at its points near mid-height. Therefore, other 
shapes were described whose mass distribution yields a 
Uniform Stress RSE (USRSE) [8,9]. The USRSE, displayed in 
Figure 1(b), can be made by using technologically available 
materials such as carbon nanotubes; see section 4. 

 

4. The physics of RSE 

In this section we review the basic physics of RSE [8]. For 
simplicity, let us consider inextensible limit in which the RSE 
floppy string obeys the Newtonian equation of motion 

extfR
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In Eq. (1),  ),( tsR
  are 3-D space positions of string points 

parametrized by their arc-length distances s  [thus,

1|/),(|  stsR
 ]. )(s  in Equation (1) is the string’s 

local mass line density, while ),( tsT  is the local value of 
the string’s tension field, and  

extf


 

are external forces (per unit length) acting on the string. 
Prominent among them is the force of the Earth gravity, for 
which, 
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is the Earth’s gravitational potential with earthM = the 
Earth’s mass. ),( tsT  is obtained by solving Eq. (1) 
combined with the local constraint 1|),(ˆ| tst , with

sRtst  /),(ˆ
 . In the presence of a sliding climber of 

mass clm  at the arc-length distance )(ts , i.e., at the 3-D 
position )),(()( ttsRtRcl
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 , the external force density 

acting on the RSE, 
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 in Eq. (1) includes also the term  
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 is the normal force exerted by the climber on the 
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. The climber dynamics is governed by the 

second Newton’s law,   
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with:  

           )ˆ(ˆ)( VttVV
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 for any vectorV


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Space elevators such as RSE are most naturally discussed by 
using non-inertial reference frames. In a non-inertial frame 
rotating with the angular velocity


, inertial forces have to 

be included into 
extf


 and 
extF


in Eqs. (1) and (1’), yielding  
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see [17]. In the geosynchronous frame (used in the 
simulations and the figures displayed here) rotating with 
the period = earth/2 = one day, Eq. (3) is employed with  

                              
earthearth e  2

ˆ


,  

with unit vector 2ê  along the Earth polar axis and the 
equator in the (R1, R3) plane; see Figs. 1(a) and (b). In the 
simulations, at 0t  the RSE is initially in the (R1, R2) plane. 
To initiate the double rotation motion, the RSE is given 
initial spin around the R1-axis, with the angular velocity 
RSE. The RSE bottom point is tied to the Earth to provide 
access for the sliding climbers starting there their trip into 
outer space; see also Sec. 7. Other than this, the RSE moves 
purely under the influence of inertia and gravity. 

 
Figure 2 - From the simulations of Ref. 9: The upper panel:  The  )(1 tR  

coordinate of the climber which slides with no friction along the floppy RSE 
with the (initial) shape in Figure 1(a) and TRSE=10.83 min.  The lower panel:  
The )(1 tR  coordinate of the climber on the floppy RSE with initial shape in 

Figure 1(b) with TRSE=4.22 min. See Sec. 4 for the analytic explanation of the 
nearly periodic character of climber motion. Note: With a weak sliding 
friction, climbers would eventually stop near the RSE point minimizing the

))(()( sRsU eff


 . From the equipotentials of the effective potential 

labeled in Figure 1, one can see that this point occurs close to the RSE point 
maximizing its 

2R  coordinate in Figure 1. 

A remarkable effect of the RSE double rotation motion is 
that it facilitates a physical mechanism which efficiently 
moves sliding engine free climbers from the surface of the 
Earth to remote extraterrestrial locations. As evidenced by 
the simulations in Figure 2, a sliding climber starting at rest 
close to the Earth spontaneously oscillates between its 
initial position and a turning point in outer space. The nearly 
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periodic character of the climber’s motion is explained later 
on in this section. 

Another remarkable effect is an enduring stability of the 
RSE sizes and orientation and the persistence the RSE’s 
double rotation motion which is provided by a specially 
chosen form of the mass line density )(s ; see Eq. (8) 
below and Figure 3. This effect is documented by the 
simulations results displayed in Figure 4 [8,9]. 

These two outstanding RSE effects are revealed by 
considering the system in the (natural for the RSE) double 
rotating frame (DRF) obtained from the geosynchronous 
(single rotating) frame by adding to it the rotation around 
the 1R -axis in Figs. 1(a) and (b). The net angular velocity of 
the DRF is thus     

                  )()( tt earthRSE 


.  

Here,  
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1R -axis while   
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rotates with the angular velocity  RSE  (and thus 
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the Eq. (3) yields 
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being a time-independent effective potential generating 

inertial forces sensed in the DRF. The residual, resa


 term in 

Eq. (4) includes velocity dependent terms that vanish for an 
object at rest in the DRF, as well as fast time-dependent 

oscillatory terms of  
inerta

  (with frequencies RSE  and 

RSE2  >> earth ) that have zero time average over one 

RSE period (
RSERSET  /2 ); see [9].  For the here 

interesting situations with TRSE=2RSE ~ 10min << 

Tearth=2earth=1 day, one has RSE>>earth and the 

potential term in Eq. (4) dominates over the  resa


 term 

[8,9]. Thus, Eq. (2) reduces to  
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The time independence of this effective potential 
 
allowed 

us in [8] to find a special (‘magical’) mass distribution )(s  
with which the RSE string indefinitely maintains its initial 
shape by remaining at rest in the DRF. For a given flat RSE 
string shape specified by a 2-d curve 
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 as in Eq. (6). The resulting 
differential equations for )(sT  and )(s  can be 
integrated exactly, yielding the magical mass line density
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is evaluated at the RSE point [R1(s),R2(s)],  whereas 
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In Eq. (8’), )(sC  is the local RSE string curvature; 

dsdsC /)(   with )(s , the angle between the 
tangent unit vector sRst  /)(ˆ


and the  R1-axis in Figs. 

1(a) and (b). The unit vector )(ˆ sn  makes the angle 

2/)(  s  with the R1-axis.  

The magical mass distributions obtained by applying Eq. (8) 
to the (initial) RSE shapes in Figure 1, which are used in the 
simulations discussed in this paper, are shown in Fig. 3.  Our 
simulations [8-10], which are free of the approximation Eq. 
(6) employed in Eq. (8), indeed show (under the conditions 
discussed in Sec. 5 in the following) a remarkable stability of 
the RSE sizes and orientation provided by the magical mass 
distribution in Eq. (8). We note that )()( sAs   , with 
  the density of the RSE material and )(sA =the string 
cross-sectional area (which can vary along the RSE by 
tapered cable design). Thus, by Eq.  (8’), the tensile stress 
obeys the relation, 
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The RSE displayed in Figure 1(b) is a uniform stress RSE 
(USRSE) for which the tensile stress )(sp  is s-independent.   
For an USRSE, by Eq. (8’’), the .)( constKsK   With 
this condition, Eq. (8’) yields the second order differential 
equation  
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with
ieffi Ra  / ; 2,1i . Differential equation 

Eq. (8’’’) can be used to obtain a USRSE shape for any given 

K  and
RSET .  Figure 1(b) shows thus obtained USRSE shape 

for TRSE=4.22min  and 2

1

~
vKK  . Here, 

v1=(GMearth/Rearth)1/2=1st cosmic speed=7.89km/sec 

[Rearth=the Earth radius], whereas K
~

is a dimensionless 

constant. 

 

Figure 3 - The upper panel: the magical mass distribution [i.e., line density 

obtained by Eq. (8)] of the RSE with the shape in Figure 1(a) and TRSE =10.83 

min. The lower panel: the magical mass distribution (line density) of the 

RSE with the shape in Figure 1(b) and TRSE =4.22 min. Adapted from [9].  

For the USRSE in Figure 1(b), we set 4/1
~

K , 

corresponding, by Eq. (8’’), to the USRSE tensile stress 

GPavKp 24.20
~ 2

1    if the USRSE is made of 

carbon nano-tubes (CNT) with 3/300,1 mkg . Thus, 

pleasingly, the tensile stress p  of this USRSE is smaller than 

the tensile strengths GPap 60max   of single-wall CNT, 

and GPap 150max   of multi-wall CNT [2,3]. So, this 

USRSE is technologically achievable with modern day 

materials.  By Eq. (8) with .)( constKsK 
 
, and by  

  
ssRsRR
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we find that the USRSE magical mass line density obeys the 
equation 
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for any (s,s1). It is depicted in lower panel of Figure 3 for the 
USRSE in Figure 1(b) [with TRSE=4.22 min, and 4/1

~
K ], 

with 01 s  corresponding to the USRSE bottom at the 
Earth. This line density profile can be technologically 
achieved by using tapered cable having the cross-sectional 
area A(s) given by our Eq. (8’’’’). The USRSE   in Figure 1(b) is 
attached to a Linear Space Elevator (LSE) which can also be 
designed to have a uniform stress maxp  [16]. The LSE line 
mass density has a discontinuity at the junction between 
the USRSE and the LSE (to balance the USRSE tension force 
pulling down the LSE along the R1-axis). Away from the 
junction, the uniform stress LSE line mass density obeys Eq. 
(8’’’’) with )(sR


= (R1=s, R2=0, R3=0), [16].  We note that 

unlike the technologically achievable USRSE in Figure 1(b) 
with maxpp  (for CNT), the Earth based elliptic RSE in 
Figure 1(a) has a non-uniform stress that exceeds the CNT 
tensile strength in the midsection of the RSE. However, 
elliptic RSEs built on dwarf planets such as asteroids Ceres 
and Vesta would have a tensile stress maxpp  (for CNT). 
They are thus technologically achievable. 

Periodic like motion of sliding climbers (seen in the 
simulations in Figure 2) goes on along nearly constant shape 
RSE strings. This climber motion can be understood by 
means of Eq. (6). For a time-independent RSE shape )(sR

 , 
the Eq. (1’), in combination with Eq. (6), reduces to   

         

s

sR

sRs

sR

sR
sts

eff

effeff





















))((

)(

)(

)(
)(ˆ








  

yielding the conservation law 
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consttsR
dt

tds
eff 







 
            (9) 

Eq. (9) is isomorphic to the familiar conservation law 
describing oscillatory 1-d motion of a particle with the 
position )(ts  in the potential    

                       ))(()( sRsU eff


 .       

Strikingly, in this potential, sliding climbers simply oscillate 
between two turning points, one of which is close to the 
Earth (starting point) whereas the other one is in outer 
space; see Figs. 1 and 2. In fact, the RSE bottom (the point

0s )   becomes a local maximum of the potential 
)(sU (seen by sliding climbers) provided the RSE angular 

frequency RSE is bigger than the minimal frequency [8,9],    

2/11

2/11
min

)
)0(

~
1

1(

|))0(|1(






sKR

v

sCR
R

v

earth

earth

earth             

                                                                                                (10) 

with 2

1/)()(
~

vsKsK  [8,9].  Due to this, 
minRSE

, i.e., 
minmax /2  TTRSE

 , a climber initially at rest 

will start moving up no matter how close is its initial 

position to the RSE bottom )]0,[ 321  RRRR earth in 

Figs. 1(a) and (b), at 0s  . For the elliptical RSE in Figure 

1(a) with the semi-axes b=0.5Rearth, a=3.2107Rearth, the 
climbing threshold RSE period min71.22max T . This is 

bigger than the 
RSET of min83.10 of the elliptic RSE in 

Figure 1(a), yielding the oscillatory sliding climber dynamics 
seen in the simulations in Figure 2, upper panel.  For an 

USRSE with 4/1)(
~

sK , by Eq. (10), Tmax=37.78min. This 

is bigger than the TRSE of 4.22min of the USRSE in Figure 
1(b), yielding the oscillatory sliding climber dynamics seen in 
the simulations in Figure 2, lower panel. We note that the 
USRSE point having the maximum distance R2 away from the 

1R axis in Figure 1(b) has the speed 

1max2)( vRRSE  =1st cosmic speed (for the USRSE with 

TRSE=4.22 min). Thus, the USRSE loop in Figure 1(b) can be 
used for launching satellites. We will discuss potential 
applications of the RSE in Sec. 6. It is significant to note that 
[by using differential Eq. (8’’’)] the USRSE loops can be 
designed with their bottoms anywhere above the Earth 
surface (e.g., above the dense atmospheric layer, to avoid 
air-resistance). 

 

5. Shape stability of RSE and crumpling transition 

Numerical simulations of RSEs reveal an interesting 
morphological phase transition of the RSE strings that 
occurs with changing the (initial) RSE angular frequency 

RSE , i.e., its period TRSE [8-10]. 

 

Figure 4 - From the simulations in [9]: For the elliptic RSE in Figure 1(a), the 

RSE top coordinates R1(t) in (a), R3(t) in (b), and, in (c), the evolution of the 

RSE angular momentum L1 about the R1-axis (in the frame rotating with the 

Earth), for TRSE =10.83min and TRSE =21.66min. In (d), the evolution of the 

RSE profile (of one of its two branches), for TRSE =21.66min over the first 

ten days. Here, for any RSE point P, the Y is its distance away from the 

(instantaneous) axis A connecting the RSE bottom and top, and the X is the 

distance between the normal projection of P onto the axis A and the RSE 

bottom point (at X=0). 

This transition was seen both in the USRSE and the elliptical 
RSE. E.g., for the elliptical RSE in Fig 1(a), it occurs at a 
critical value for the RSE period Tcrit min17 . For TRSE < 
Tcrit, the tension field ),( tsT  remains everywhere positive. 
It exhibits only small oscillations around 0)0,( tsT  
given by Eqs. (8) and (8’). However, for TRSE > Tcrit, the RSE 
string (in both the elliptical  

RSE and the USRSE) undergoes a dramatic shape change 
and chaotic long-time dynamics: Tension field develops a 
noise like behavior in which ),( tsT  assumes both positive 
and negative values. In effect, the RSE string crumples due 
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to the buckling of the string sections that are under locally 
negative ),( tsT .   

Macroscopically, the string crumpling triggers a narrowing 
of the RSE initial shape, displayed in Figure 4(d) for the 
elliptical RSE with TRSE =21.66min. The narrowing eventually 
turns initially elliptic RSE into two nearly independently 
fluctuating linear type space elevators connecting the 
massive elevator top and bottom regions.  Chaotic dynamics 
of the two elevator’s branches reflects an ergodic-like 
(thermal equilibrium like) string state similar to that of the 
directed polymers [5] stretched between the RSE top and 
bottom.  

Related to the RSE narrowing is the dynamics of the RSE 
angular momentum L1 about the R1-axis (in the frame 
rotating with the Earth as in Figure 1); see Figure 4(c) for 
the elliptical RSE with TRSE=21.66min: The L1 decays to zero 
over a two-week period. [In contrast to this, for TRSE>Tcrit, 
the USRSE narrows and loses its L1 only partially.] As seen in 
Figs 4(a) and (b) at TRSE=21.66min, these phenomena 
destabilize the position of the elliptical RSE top. It drifts 
away from its initial position (at 0.8 Earth radii above 
geostationary level) to a new slightly higher position around 
which the RSE top continues to chaotically oscillate. 

In drastic contrast to this, for TRSE < Tcrit, the string shapes of 
both the elliptic RSE and the USRSE remain nearly the same 
as in their initial configuration in Figs. 1(a) and (b), i.e., no 
RSE narrowing occurs. Related to this, as evidenced in 
Figure 4(c) for the elliptical RSE with TRSE =10.83min, the RSE 

angular momentum 1L  is nearly constant in time, whereas 

the RSE top exhibits only very small oscillations around its 
initial position; see Figure 4(a) and (b). 

 

6. Using RSEs to launch spaceships and satellites 

By the discussions of Sec. 4, RSE is a rapid extraterrestrial 
transportation system which requires no internal engines 
for the climbers sliding along the elevator strings. Climbers 
motion is naturally facilitated by employing basic natural 
phenomena, the inertial forces due to the internal RSE 
rotation around the R1-axis in Figure 1. As noted before in 
Sec. 4, RSEs can be used to launch satellites and 
interplanetary spaceships [8,9]. In this section we will 
discuss this RSE capability in more detail. It is also significant 
to note that the RSE strings can be used to host space 
stations and research posts. Sliding climbers can be then 
used to transfer useful loads and humans from the Earth to 
these extraterrestrial locations. Satellites and spaceships 
transported by sliding climbers can be released (launched) 
along RSEs. Let us look at a climber that has started its 

motion at near rest at the RSE tying position with the Earth 
in Figure 1 [there,

earthRsR  |)0(|


]. Let us then look at 
an object released from the climber when it reaches the RSE 
position  

      ]0)(),(),([)( 321  sRsRsRsR


  

in the DRF. The released object’s speed in the DRF, that is 
its speed along the tangent at )(sR


 is ds/dt.  This 

tangential velocity is obtained by Eq. (9) yielding, 
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tsRsR
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Using here the Eqs. (5) and (7), we find,  
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Of the practical interest is the released object speed 
observed in the inertial frame. Consider, for example, the 
situation in which the object is released when the elevator, 
9 is in the plane of Figure 1(a, upper panel) or Figure1 (b) 
(then the R2 axis of DRF points along the north-south 
direction). Let the object be released from a climber which 
is on the lower branch of RSE in Figure 1. The RSE velocity at 
this point is in the direction of the Earth rotation and has 
the magnitude  

  ),(|)(| 12 sRsRv earthRSERSE                     (13)
 

in the inertial frame. This velocity points into the plane of 
Figure 1. In addition to this velocity, the released object also 
has the tangential velocity ds/dt which is in the plane of 
Figure 1.  Thus, by Pythagorean Theorem, the total released 
object speed in the inertial frame, vreleased  satisfies 

  . )/()( 22 dtdsvv RSEreleased 
                    (14) 

By Eqs. (12) through (14), the speed of the released object 
in the inertial frame satisfies the equation  

 

,)]([)(|)(|

)]()[
4

1
(

|)(|
)(

2

1

2

1

2

12

2

2

22

2

sRsRsR

sR

sR

M
G

R

M
Gv

earthearthRSE

earthRSE

earth

earth

earth
released





 

(15)                                                                                       

 
if the object is released when the elevator loop is in the 
plane of Figure 1(a, upper panel) or Figure 1 (b), from a 
climber which is on the lower branch of RSE in Figure 1. If 
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this speed is large enough, the released object will unbind 
from the Earth, and approach infinity with the speed v  
(“escaping speed”) that can be obtained from the 
mechanical energy conservation law,  

    
.
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1 22
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Gvv earth
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              (16)

 

By Eqs. (15) and (16),  
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     (17)                                                                                     
 

Above, we introduced the first cosmic speed 

  sec/89.7)/( 2/1

1 kmRGMv earthearth  .  

Again, we stress that the Eq. (17) applies if the object is 
released when the elevator loop is in the plane of our Figure 
1(a, upper panel) of Figure 1(b), from a climber which is on 
the lower branch of RSE in Figure 1. This particular case is 
significant because the enhancement of the released object 
speed provided by the rotation of the Earth is at its 
maximum (for the RSE rotating around the R1 axis in the 
direction indicated in Figure 1). For the interesting (for RSE 
systems) situations with RSE>>earth [see the discussions 
following Eq. (5)], the results in Eqs. (13), (15) and (17) 
reduce to approximate yet more illuminating results, 

        |,)(| 2 sRv RSERSE                              (13’) 
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     (15')                                                                           

while the escaping speed (“speed at infinity”) approximately 
satisfies the simple equation, 

   .)]([)()(
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1 2

2

2

1

2 sRvv RSE
              (17’) 

The approximate results (13’), (15’), and (17’) are equivalent 
to ignoring the Earth rotation (setting earth=0) in the exact 
results in Eqs. (13), (15), and (17). Thus, the above 
approximate results are significant also because they 
(approximately) apply to the objects released from the RSE 
at any orientation of the rotating RSE plane relative the R1-
R2 plane in Figure 1. [We stress that |R2(s)| in the above 
equations is the distance between the release point and the 
R1 axis.] 

The approximate results (13’), (15’), and (17’) offer a better 
insight into the launching actions of the RSE.  By Eq. (17’), 
the released object (spaceship) will escape to an 

interplanetary travel [ 0)( 2 v ] if the RSE speed of the 

release point of (=RSE|R2(s)|) is bigger than the first cosmic 
speed v1. By the Eq. (17’), the highest possible escaping 

speed  v
 
is achieved if the object is released from a sliding 

climber at the RSE point with the maximum value of |R2|. 
For example, for the elliptic RSE in the figure 1(a), this point 
is the midpoint of the RSE, with |R2|max=b=0.5Rearth at 
R1=a+Rearth=4.2107 Rearth. At this point, with TRSE=10.83 min, 

one has RSE|R2(s)|=3.9v1. With this value, the Eq. (17’) 
predicts the value of the highest possible escaping speed 

(speed at infinity) from this RSE to be 1max 3310.5)( vv   

which is only slightly smaller than 
15200.5 vv 

 as 

obtained by using the exact Eq. (17). We note that for the 

marginal case with RSE|R2(s)|=v1, whence the 
approximation Eq. (17’) predicts 0v , the exact 

equation (17) yields an 0)( 2 v
 

, meaning that the 

object still unbinds with a small escape velocity at infinity. A 
situation like this is (incidentally) realized in the USRSE in 
the Figure 1(b), with TRSE=4.22 min. For its point with the 
maximum value of |R2| (|R2|max=0.052Rearth at R1 

=1.02Rearth) we find RSE|R2(s)|=1.04v1 (which is only slightly 
above v1). The approximate Eq. (17’) would then yield 

14040.0 vv   
, whereas the exact Eq. (17) gives 

154303.0 vv 
 for this case [if the object is released when 

the elevator loop is in the plane of our Figure 1, from a 
climber which is on the lower branch of USRSE in Figure 
1(b)].  

The shape of a USRSE loop is determined by solving the 
differential equation (8’’’), and thus it depends on the value 
of TRSE=RSE. In Figure 5 (upper panel), we display the 
USRSE shapes for several different values of TRSE, all for the 
same value of the parameter  4/1

~
K  (corresponding to 

the string tensile stress GPap 24.20  if the USRSE is 
made of carbon nano-tubes, see Sec. 4). In Figure 5 (lower 
panel), we plot, versus TRSE, the USRSE speed RSE|R2(s)|max 
as well as the speed at infinity v  of an object released 
from a climber at |R2(s)|max  on the lower branch of USRSE 
in Figure 1(b) when this branch is in the plane of our Figure 
1. With a known RSE shape, this speed can be calculated 
from Eq. (17).  Note that v vanishes at a characteristic 
value of TRSE of about 6 min. 

Thus far we have discussed the case with no sliding friction 
between the climber and the RSE string. Only then Eq. (9) 
applies. The friction may be significantly depressed, e.g., by 
magnetic levitation. With some friction present, climbers 
would eventually stop near the RSE point minimizing the 
effective potential seen by the climber in DRF, 

))(()( sRsU eff


 . 
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From the equipotentials displayed in Figure 1, this point 
occurs very close to the RSE point maximizing its R2 
coordinate in Figure 1. Interestingly, as noted above, the 
USRSE point having the maximum distance |R2| away from 
the R1-axis in Figure 1(b) has the speed 1max2 || vRRSE   = 
1st cosmic speed (for the particular USRSE shown in Figure 
1(b), with TRSE=4.22 min and 4/1

~
K ; see Sec. 4)  Thus, 

the USRSE  loop in Figure 1(b) can be used for launching 
satellites carried from the Earth by a sliding climber. Indeed, 
due to the friction, the climber would eventually stop close 
to the USRSE point having the maximum distance away 
from the 1R axis in Figure 1(b). At this point, the stopped 
climber rotates with the RSE with the speed 1v =1st cosmic 
speed. Thus, the climber can directly release the carried 
satellite into a nearly circular low Earth orbit. 

 

Figure 5 - In the upper panel, we plot the USRSE loop shapes obtained for 

several different values of TRSE, all for the same value of the parameter

4/1
~

K . In the lower panel, we plot, versus TRSE, the USRSE speed 

RSE|R2(s)|max as well as the speed at infinity 
v  of an object released from 

a sliding climber at |R2(s)|max on the lower branch of USRSE in Figure 1(b) 

when this branch is in the plane of our Figure 1. It is obtained from Eq. (17). 

The two speeds are given in units of the first cosmic speed v1. Adapted 

from [9]. 

 

 

7. Physics of Untied RSE and Celestial Dumbbells 

In this review article we also discuss basic physics of 

celestial scale dumbbells such as the Analemma Tower 

suspended from an asteroid orbiting the Earth [18]. 

Celestial dumbbells involve two large masses (top and 

bottom) connected by strings. The two masses move 

geosynchronously with the Earth, with the bottom mass 

remaining close to the Earth and the top mass moving 

above the Earth’s geosynchronous satellite orbit. Notable 

and unusual examples of celestial scale dumbbells are 

untied Rotating Space Elevators (RSE) [10]. Elliptic RSE is 

similar to celestial dumbbells such as the Analemma Tower 

because it has a large mass concentration in the top and 

bottom regions of the loop; see figure 3, upper panel.  

 

Figure 6 - From simulations of floppy untied RSE; adapted from [10]. The 
RSE is conceptualized as an arrow with head being the RSE top and end of 
tail being the RSE bottom. The Earth is depicted as a small circle. The 
length unit used here is 1 Earth radius. Each panel gives a time sequence of 
RSE bottom and top projections onto the equatorial plane in the inertial 
frame, over the first 6000 min of time evolution.  

What will happen if one unties the bottom of the elliptic 
RSE (ERSE) in Figure 1 from the Earth? This interesting 
question is investigated by us in [10]. Interestingly, it was 
found that the tying of the bottom may not be needed at all 
to achieve the stable double rotating motion of ERSE. In 
fact, the magical mass distribution )(s  in Eq. (8) does not 
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assume that the loopy ERSE is tied to the Earth. Thus, it is in 
principle possible that an untied ERSE exhibits persistent 
shape and everlasting double rotating motion much like the 
tied ERSE. This intriguing possibility was explored by 
studying the dynamics of the untied elliptical RSE [10]. The 
actual untied ERSE behavior was found to crucially depend 
on the distance D (“gap”) between the ERSE top and the 
geostationary satellite orbit (with the radius of 6.6108 Earth 
radii). Celestial dumbbells exhibit interesting nonlinear 
dynamics [10]. Thus, the untied RSE loop may still behave as 
if it were tied to the planet. Such a quasi-tied yet untied RSE 
loop remains close to the Earth and exhibits persistent 
shape and enduring double rotating motion. Moreover, the 
climbers sliding along such a quasi-tied RSE move in much 
the same way as they do along a tied RSE.  

Under some conditions however geosynchronous orbits of 
untied celestial scale dumbbells, such as untied RSE and 
Analemma Tower, may undergo an instability leading them 
to a dynamical state in which the dumbbell hops well above 
the Earth surface; see figure 6. This hopping regime occurs 
if the dumbbell top initial height above geostationary orbit  
D is bigger than 𝐷ℎ𝑜𝑝𝑝𝑖𝑛𝑔 ≅ 0.2Earth radii.  By increasing 
the gap D above the hopping threshold 𝐷ℎ𝑜𝑝𝑝𝑖𝑛𝑔, the 
maximum height reached during hopping increases and 
eventually diverges at the characteristic gap value 
𝐷𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ≅ 2.1 Earth radii. Such a celestial scale dumbbell 
unbinds from the Earth and escapes to infinity, i.e., to 
interplanetary space. 

 

8. Summary 

In summary, the RSEs are rapid outer space transportation 
systems that require no internal engines for the climbers 
sliding along the elevator strings. RSE strings exhibit 
interesting nonlinear dynamics and statistical physics 
phenomena.  RSEs’ action fundamentally employs truly 
basic natural phenomena -- gravitation and inertial forces. 
Satellites and space-crafts carried by sliding climbers can be 
released (launched) along RSEs. RSE strings can host space 
stations and research posts. Sliding climbers can be then 
used to transport useful loads and humans from the Earth 
to these outer space locations. The RSE exhibits a variety of 
interesting dynamical phenomena explored by numerical 
simulations. Thanks to its special design aided by its magical 
mass distribution, the RSE exhibits persistent shape and 
enduring double rotating motion. Under some conditions 
however the RSE may undergo a morphological transition to 
a chaotic state reminiscent of fluctuating directed polymers 
encountered in the statistical physics of strings and 
membranes. 
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